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Abstract. Using the method of Frobenius, the attempt to find a closed-form solution to the Schrödinger
equation for a model potential V (r) = −Ze2/

√
r2 + a2 is described. Inspection of the series solution in

the asymptotic region suggests a substitution of a four term recurrence relation by a two term relation
in order to extract explicit solutions that approach to those obtained for the hydrogen atom as a → 0
smoothly. The resulting approximate solutions are compared with numerical ones and shown to provide a
good basis set for high Rydberg states.

PACS. 31.50.+w Excited states

1 Introduction

In previous studies [1,2], we have developed the inverse
Born-Oppenheimer approximation (IBOA) as providing
a new set of basis to perform ab initio calculations. By
the IBOA, a molecule in high Rydberg states can be ap-
proximated as a Rydberg electron-ion system where in the
zeroth order description the Rydberg electron and the par-
ent ion can be treated separately. One natural basis for the
Rydberg electron is the usual hydrogen basis. However, as
we have pointed out in a previous paper [2], the singularity
of the pure Coulomb potential causes divergence problems
when applying it to low-l Rydberg states. To remedy this
difficulty and at the same time to preserve the simplic-
ity of the above-mentioned picture, we proposed a model
potential of the form

V (r) =
−Ze2

√
r2 + a2

(1.1)

where the parameter a is of about the size of nuclear
motion. This potential arises from an expansion, other
than the usual von Neumann expansion, of the Coulom-
bic interactions between the Rydberg electron and the ion
[2]. Using this model potential, one can avoid the diver-
gence problems because the potential has no singularity
as r → 0. Besides, this model potential exhibits the same
long-range Coulombic tail as r →∞ and serves as a bet-
ter choice to represent the true short-range behavior of a
molecular system.

Initiating from different motivation, the model poten-
tial of equation (1.1) (soft-Coulomb potential) has been
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extensively used in the numerical simulation of the dynam-
ical response of an atomic system in strong radiation fields
[3–9], in the calculation of high harmonic generation and
multiphoton ionization [10–13], and in the pseudopoten-
tial modeling of electronic structure of solids and surfaces
[14,15]. Recently, Liu and Clark [16] and Clark [17] re-
ported a family of closed-form solutions to the Schrödinger
equation for the model potential in 1D and 3D cases, re-
spectively. In their method, the known function form of
the eigenvalues is fixed and “quantization” is performed
to the suitable parameter a so that the physical boundary
conditions can be satisfied. This procedure has been used
to generate the Sturmian functions for hydrogen atom [18]
and might be referred as the “pre-quantization” method.
However, one should notice that only a subset of the so-
lutions to a Sturmian equation can be obtained in this
method and thus the general properties of complete sets
can not be guaranteed. For example, they obtained only
eigenvalues with integer quantum defects but could not
find the global weight function over which all eigenfunc-
tions of a given n are orthogonal [16,17].

In this paper, we will use the Frobenius series to rep-
resent the wavefunction and use the method of Frobenius
to solve the equation. The question when the method of
Frobenius will work is assured by the Fuchs’s theorem
[19,20], which states that at least one series solution can
be obtained if the series is expanded at an ordinary point
or at worst a regular singular point. By standard methods,
one can find only implicit solutions from which the energy
spectrum can not be obtained and the expansion coeffi-
cients become apparently infinite as a → 0. Therefore,
an assumption is proposed to extract explicit solutions
that approach to those obtained for the hydrogen atom
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as a→ 0 smoothly. To justify the validity of this assump-
tion, a numerical analysis is performed and the numerical
results are compared with the series ones. It is found that
the series solutions show good agreement with almost all
the energy eigenvalues except for low n states.

2 Solutions by the Frobenius series expansion

The radial part equation for the model potential is

d2R

dr2
+

2
r

dR
dr

+
[
−α2 +

β√
r2 + a2

− l (l+ 1)
r2

]
R = 0

(2.1)

where

α =

√
2m
~2

(−E) (2.2)

and

β =
2m
~2
Ze2. (2.3)

Substituting

R (r) = rlχ (r) , (2.4)

into equation (2.1), we have

d2χ

dr2
+

2l+ 2
r

dχ
dr

+
[
−α2 +

β√
r2 + a2

]
χ = 0. (2.5)

Letting ρ =
√
r2 + a2 yields(

1−a
2

ρ2

)
d2χ

dρ2
+
(

2l+2
ρ

+
a2

ρ3

)
dχ
dρ

+
[
−α2+

β

ρ

]
χ=0. (2.6)

Making the substitution

χ (ρ) = e−αρf (ρ) , (2.7)

we find(
1−a

2

ρ2

)
d2f

dρ2
+
(
−2α+

2l+2
ρ

+
2αa2

ρ2
+
a2

ρ3

)
df
dρ

+
[
β − α (2l+ 2)

ρ
− α2a2

ρ2
− αa2

ρ3

]
f = 0. (2.8)

Noticing that the point ρ = 0 is a regular singular point,
we apply the Frobenius series

f (ρ) = ρλ
∑
k

bkρ
k, (2.9)

where λ is the indicial index to be determined. The recur-
rence formula for the coefficients is then given by

a2 (k+λ+3) (k+λ+1) bk+3 =αa2 (2k+2λ+3)bk+2

+
[
(k + λ+ 1) (k + λ+ 2l+ 2)− α2a2

]
bk+1

+ [β − 2α (k + λ+ l + 1)] bk (2.10)

where k = −3,−2,−1, ...
If a = 0, equation (2.10) becomes

(k+λ+1)(k+λ+2l+2)bk+1=[2α(k+λ+l+1)−β]bk.
(2.11)

The indicial equation of equation (2.11) is

λ (λ+ 2l+ 1) = 0, (2.12)

yielding λ = 0 or λ = − (2l + 1). The series corre-
sponds to the hydrogenic case with quantized energy
En = −1/2n2 (au), where n = k + l + 1 if the series
terminates as a polynomial of the k-th degree.

On the other hand, if a 6= 0, for k = −3, equa-
tion (2.10) gives

a2λ (λ− 2) b0 = 0 (2.13)

yielding λ = 0 or λ = 2. For λ = 0, we have

b1 = αb0 (2.14)

b3 = αb2 +
β − α3a2

3a2
b0 (2.15)

and so on, while for λ = 2, equation (2.10) leads to

b1 = αb0 (2.16)

b2 =
(
α2

2
+

2l + 3
4a2

)
b0 (2.17)

and

b3 =
(
α3

6
+
α (2l+ 3)

4a2
+

β

15a2

)
b0. (2.18)

Continuing this procedure we can determine b4, b5, b6, ...
and the attempted series solution is achieved. However,
the series represents only an implicit solution because the
eigenvalues have not yet been determined.

From the above discussions, one can see that it is im-
possible to connect the solutions from the case of a 6= 0
to the case of a = 0 by simply letting a → 0 because the
parameter a always appears in the denominators. To make
this connection possible and to obtain the required energy
spectrum, we notice that for large k+ l the recurrence for-
mula (Eq. (2.10)) becomes

a2
(
k2bk+3 − 2αkbk+2

)
= k2bk+1 − 2αkbk. (2.19)

Restated, in the asymptotic region the series defined by
equation (2.10) looks like a combination of two series with
the same term ratios. This inspection from equation (2.19)
suggests that the four term recurrence relation can be
reduced to a two term relation[

(k + λ+ 1) (k + λ+ 2l+ 2)− α2a2
]
bk+1

= [2α (k + λ+ l+ 1)− β] bk. (2.20)

for the large k + l limit. The series defined by equa-
tion (2.20) behaves as e+2αr and thus must be terminated.
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Table 1. Comparison of the numerical (N) and analytical (A) eigenvalues of the model potential for Z = 1 and a = 1.

n O  ���1� O  ���$� O  ���1� O  ���$� O  ���1� O  ���$� O  ���1� O  ���$� O  ���1� O  ���$�

1 -0,2749 -0,3229

2 -0,0927 -0,1175 -0,1130 -0,1185

3 -0,0455 -0,0548 -0,0521 -0,0548 -0,0544 -0,0549

4 -0,0269 -0,0311 -0,0298 -0,0311 -0,0308 -0,0311 -0,0311 -0,0311

5 -0,0177 -0,0200 -0,0192 -0,0200 -0,0198 -0,0200 -0,0199 -0,0200 -0,0200 -0,0200

6 -0,0126 -0,0139 -0,0135 -0,0139 -0,0138 -0,0139 -0,0138 -0,0139 -0,0139 -0,0139

7 -0,0094 -0,0102 -0,0099 -0,0102 -0,0101 -0,0102 -0,0102 -0,0102 -0,0102 -0,0102

8 -0,0072 -0,0078 -0,0076 -0,0078 -0,0078 -0,0078 -0,0078 -0,0078 -0,0078 -0,0078

9 -0,0058 -0,0062 -0,0060 -0,0062 -0,0061 -0,0062 -0,0062 -0,0062 -0,0062 -0,0062

10 -0,0047 -0,0050 -0,0049 -0,0050 -0,0050 -0,0050 -0,0050 -0,0050 -0,0050 -0,0050

11 -0,0039 -0,0041 -0,0041 -0,0041 -0,0041 -0,0041 -0,0041 -0,0041 -0,0041 -0,0041

12 -0,0033 -0,0035 -0,0034 -0,0035 -0,0035 -0,0035 -0,0035 -0,0035 -0,0035 -0,0035

13 -0,0028 -0,0030 -0,0029 -0,0030 -0,0029 -0,0030 -0,0030 -0,0030 -0,0030 -0,0030

14 -0,0024 -0,0026 -0,0025 -0,0026 -0,0025 -0,0026 -0,0025 -0,0026 -0,0026 -0,0026

15 -0,0021 -0,0022 -0,0022 -0,0022 -0,0022 -0,0022 -0,0022 -0,0022 -0,0022 -0,0022

16 -0,0019 -0,0020 -0,0019 -0,0020 -0,0019 -0,0020 -0,0020 -0,0020 -0,0020 -0,0020

17 -0,0017 -0,0017 -0,0017 -0,0017 -0,0017 -0,0017 -0,0017 -0,0017 -0,0017 -0,0017

18 -0,0015 -0,0015 -0,0015 -0,0015 -0,0015 -0,0015 -0,0015 -0,0015 -0,0015 -0,0015

19 -0,0013 -0,0014 -0,0014 -0,0014 -0,0014 -0,0014 -0,0014 -0,0014 -0,0014 -0,0014

20 -0,0012 -0,0012 -0,0012 -0,0012 -0,0012 -0,0012 -0,0012 -0,0012 -0,0012 -0,0012

For a definite bk+1 to be vanished, we obtain (in atomic
units)

En = − 1
2 (n− δl (En, a))2 (2.21)

and

δl (E, a) = −λ. (2.22)

Notice that equation (2.21) is equivalent to the general
Rydberg formula observed in experiments and δl (En, a)
is the quantum defect. Therefore, we assume that the se-
ries defined by equation (2.20) represents an approximate
solution to equation (2.10). In the asymptotically large k
domain this assumption can be satisfied if the indicial in-
dex λ can be determined by requiring the ratios bk+1/bk
inferred from equations (2.10, 2.20) to be the same; that is,

α (2k + 2λ− 1)
(k + λ+ 1) (k + λ− 1)

=

2α (k + λ+ l + 1)− β
(k + λ+ 1) (k + λ+ 2l + 2)− α2a2

· (2.23)

From equation (2.23), only the fractional part of λ can be
determined (λ is the quantum defect with a minus sign)
and we then find

λ =
α (2l + 3) + 2β + 2α3a2 −

√
∆

2 [α (2l+ 3) + β]
mod (1) , (2.24)

where

∆=[α(2l+3) + 2β + 2α3a2]2 − 12α3a2[α(2l + 3) + β].
(2.25)

By making use of equations (2.24, 2.25), we can easily
show the important characteristics found in the quantum
defect theory; that is, δl (E, a)→ 0 as a→ 0, and δl (E, a)
decreases as l increases. Therefore, it is indeed proved that
the above approach is consistent with the quantum defect
theory.

From equation (2.20) we obtain

b1 =
2α (λ+ l + 1)− β

(λ+ 1) (λ+ 2l+ 2)− α2a2
b0 (2.26a)

b2 =
2α (λ+ l + 2)− β

(λ+ 2) (λ+ 2l+ 3)− α2a2
b1 (2.26b)

b3 =
2α (λ+ l + 3)− β

(λ+ 3) (λ+ 2l+ 4)− α2a2
b2 (2.26c)

and so on. The general form of the series is thus given by

f (ρ) = b0ρ
−δl + b1ρ

1−δl + b2ρ
2−δl + ...+ bkρ

k−δl ,
(2.27)

which can be reduced to the hydrogen case as a→ 0. It is
obvious that using this wavefunction one can avoid the di-
vergence problems in calculating relevant matrix elements
compared to using the hydrogen one.

Although physically preferred, it should be noted that
the assumption of reducing the four term recurrence rela-
tion to the two term relation seems accidental. It has not
been clear yet from the above analysis as to what to the
extent the assumption holds. Therefore, we shall perform
a numerical analysis to compare the energy spectrum ob-
tained by the series method with the resulting ones. We
use the Runge-Kutta 4th order method with the finest
resolution of 10−3 to solve equation (2.1). Table 1 shows
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comparison between the series and the numerical results
for Z = 1 and a = 1. One can see in Table 1 that almost
all the energy eigenvalues can be obtained by using the
above simple analytical solutions except for low n states.
For example, for np states, the numerical and the series
results are the same as n ≥ 17 and for ng states, they
are the same as n ≥ 5. The general agreement between
the analytical and the numerical results has been verified
and shown to be extended to other nl states. Therefore, we
conclude that we have obtained an approximate analytical
solution to equation (2.1) for high Rydberg states.
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